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ABSTRACT 

Design charts and tables have been developed for 
the elastic torsional stress analyses of free prismatic 
shafts, splines and spring bars with virtually all commonly 
encountered cross sections.  Circular shafts with rect- 
angular and circular keyways, external splines, and milled 
flats along with rectangular and X-shaped torsion bars are 
presented.  A computer program was developed at the U.S. 
Array ARRADCOM, Dover, N.J. site which provides a finite 
difference solution to the governing (POISSON's) partial 
differential equation which defines the stress functions 
for solid and hollow shafts with generalized contours. 
Using the stress function solution for the various shapes 
and Prandtl's membrane analogy, the author is able to 
produce dimensionless design charts (and tables) for 
transmitted torque and raaximum shearing stress.  The 
design data have been normalized for a unit dimension of 
the cross section (radius or length) and are provided in 
this report for solid shapes.  The eleven solid shapes 
presented, along with the classical circular cross section 
solution, provides the means for analyzing 144 combinations 
of hollow shafts with various outer and inner contours. 
Hollow shafts may be analyzed by using the computer program 
directly or by using the solid shape charts in this report 
and the orinciples of superposition based on the concept 
of parallel shafts.  The SHAFt Torsion utility program 
(SHAFT) used for the generation of the data in this hand- 
book is a spin-off of the famous Computer Language for 
Your Differential Equations (CLYDE) code and employs the 
same basic mathematical model along with an improved algo- 
rithm for maximum stress. The format of the stress charts 
differs slightly from those of the first report in this 
series (Technical Report ARMID-TR-78001).  Stress/torque 
ratio curves are presented as being more intuitively 
recognizable than those of stress.  The source code of the 
SHAFT program is available upon written request and receipt 
of a 7-track magnetic tape. 
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THE TORSION PROBLEM 

The elastic stress analysis of uniformly circular shafts in torsion 
is a familiar and straightforward concept to design engineers.   As the 
bar is twisted, plane sections remain plane, radii remain straight, and 
each section rotates about the longitudinal axis.   The shear stress at any 
point is proportional to the distance from the center, and the stress vector 
lies in the plane of the circular section and is perpendicular to the radius 
to the point, with the maximum stress tangent to the outer face of the bar. 
(Another shearing stress of equal magnitude acts at the same point in the 
longitudinal direction.)   The torsional stiffness is a function of material 
property, angle of twist, and the polar moment of inertia of the circular 
cross-section.   These relationships are expressed as: 

9    =    T/J'G, or T    =    G'Q'J 

and     S    =    T-r/J, or S     =    C-G-r 
s s 

where T = twisting moment or transmitted torque, C = Modulus of Rigidity 
of the shaft material, 0 = angle of twist per unit length of the shaft, J = 
polar moment of inertia of the (circular) cross-section, Ss = shear stress, 
and r = radius to any point. 

However, if the cross-section of the bar deviates even slightly from 
a circle, the situation changes radically and far more complex design 
equations are required. Sections of the bar do not remain plane, but 
warp into surfaces, and radial lines through the center do not remain 
straight. The distribution of shear stress on the section is no longer 
linear, and the direction of shear stress is not normal to a radius. 

The governing equation of continuity (or compatibility) from 
Saint-Venant's theory is 

8"# +  av^ "    2Ce 



where O = Saint-Venant's torsion stress function. The problem then is 
to find a <& function which satisfies this equation and also the boundary 
conditions that $ = a constant along the boundary. This O function has 
the nature of a potential function, such as voltage, hydrodynamic velocity, 
or gravitational height, its absolute value is, therefore, not important; 
only relative values or differences are meaningful. 

The solutions to this equation required complicated mathematics. 
Even simple, but commonplace, practical cross-sections could not be 
easily reduced to manageable mathematical formulae, and numerical ap- 
proximations or intuitive methods had to be used. 

One of the most effective numerical methods to solve for Saint- 
Venant's torsion stress function is that of finite differences.   The  SHAFT 
computer program was applied to a number of shafts to produce the 
dimensionless design charts on the following pages.   Most of the charts 
required approximately 50 computer runs for plot data generation, but 
once completed, the design charts for that cross-section are good for 
virtually all combinations of dimensions, material, and shaft twist. 

The three-dimensional plot of O over the cross-section is a surface 
and, with O set to zero (a valid constant) along the periphery, the surface 
is a'domb or O membrane.1   The transmitted torque (T)  is proportional to 
twice the volume under the membrane and the stress (Ss)  is proportional 
to the slope of the membrane in the direction perpendicular to the mea- 
sured slope.   Neglecting the stress concentration of sharp re-entrant 
corners, which are relieved with generous fillets, the maximum stress 
for bars with solid cross sections is at the point on the periphery nearest 
the center  (fig.  1) . 

^he best intuitive method, the membrane analogy, came from Prandtl. 
He showed that the compatibility equation for a twisted bar was the 
"same" as the equation for a membrane stretched over a hole in a flat 
plate, then inflated.   This concept provides a simple way to visualize 
the to'rsional stress characteristics of shafts of any cross-section rela- 
tive to those of circular shafts for which an exact analytical solution 
is readily obtainable. 
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Figure 1.   Membrane analogy. 
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DESIGN CHARTS AND TABLES 

Design charts and related data which support the elastic torsional 
stress analyses conducted by MISD are shown in figures 2 through 25 
and tables 2 through 25, respectively.   The item nomenclature used in 
the analyses is given in table 1 . 

These data are based on the stress function solution for various 
shapes provided by the SHAFT computer program and on Prandtl's 
membrane analogy. 

Since the design charts are dimensionless, they can be used for 
shafts of any material and any dimensions. 



Table 1.   Element nomenclature 

TORSIONAL PROPERTIES 
OF 

SOLID, NON-CIRCULAR SHAFTS 

T    =   TRANSMITTED TORQUE, N ■ m (lb - in.) 

0    =    ANGLE OF TWIST PER UNIT LENGTH, rad/mm (rad/in. 

G    =    MODULUS OF  RIGIDITY OR MODULUS OF 
ELASTICITY  IN SHEAR, kPa (lb/in.2) 

R    =    OUTER  RADIUS OF CROSS SECTION, mm (in.) 

V#—,f    =   VARIABLES FROM CHARTS (OR TABLES) 
' ds RELATED TO VOLUME  UNDER  "SOAP  FILM 

MEMBRANE" AND SLOPE OF "MEMBRANE" 

Ss =   SHEAR STRESS, kPa (lb/in.2) 

T 

Ss 

Ss 
T 

2Ge (V)R4 

GO  (-^R 

2-V-R3 
f (■ 
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"•/Re 

.5 

Figure 2.   Split shaft, torque. 



Table 2.     Split shaft,   volume factor (V) 

Y/Ri Ri/Ro  

0.1                 0.2 0.3                0.4 0.5 0.6 

0.1        .3589 .2802 .2068 .1422 .0891 .0491 

0.2        .3557 .2762 .2030 .1391 .0870 .0478 

0.3        .3525 .2722 .1991 .1360 .0848 .0464 

0.4        .3492 .2680 .1952 .1328 .0825 .0450 

0.5        .3457 .2637 .1911 .1294 .0801 .0436 

0.6        .3423 .2593 .1869 .1260 .0777 .0421 

0.7        .3387 .2548 .1824 .1223 .0750 .0405 

0.8        .3350 .2499 .1776 .1183 .0722 .0387 

0.9        .3312 .2447 .1725 .1139 .0689 .0367 

1.0        .3269 .2389 .1665 .1087 .0649 .0340 
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Figure 3.   Split shaft, stress, 



Table 3. Split shaft, stress factor (f) 

Y/Ri  Ri/Ro  

0.2 0.3 0.4 0.5 0.6 

0.1 2.2140 2.2742 2.5771 3.2178 4.4650 

0.2 2.2447 2.3162 2.6336 3.2977 4.5865 

0.3 2.2767 2.3608 2.6942 3.3838 4.7182 

0.4 2.3103 2.4082 2.7597 3.4771 4.8620 

0.5 2.3461 2.4594 2.8304 3.5795 5.0233 

0.6 2.3883 2.5142 2.9084 3.6930 5.2016 

0.7 2.4233 2.5750 2.9955 3.8232 5.4082 

0.8 2.4670 2.6423 3.0952 3.9744 5.6550 

0.9 2.5142 2.7197 3.2141 4.1618 5.9691 

1.0 2.5672 2.8140 3.3690 4.4218 6.4392 
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Figure 4.   Single keyway shaft, torque. 
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Table 4.     Single keyway shaft,   volume factor   (V) 

B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .6994 .6472 .5864 

0.3 .7379 .6900 .6316 .5648 

0.4 .7341 .6816 .6173 .5459 

0.5 .7682 .7290 .6725 .6043 .5294 

0.6 .7676 .7262 .6663 .5941 .5152 

0.7 .7668 .7224 .6592 .5848 .5032 

0.8 .7658 .7190 .6533 .5762 .4931 

0.9 .7647 .7162 .6480 .5686 .4849 

1.0 .7633 .7125 .6424 .5619 .4783 

1.2 .7621 .7079 .6347 .5531 .4697 

1.5 .7592 .7012 .6260 .5449 .4649 

2.0 .7560 .6945 .6200 .5424 
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SHEAR   STRESS 

MAXIMUM   AT   X 

SS = T (f/R3) 
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Figure 5.  Single keyway shaft, stress 
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Table 5.  Single keyway shaft, stress factor (f) 

B/R t\/  D 

0.1 0.2 0.3 0.4 0.5 

0.3 1.1867 1.2273 1.2538 1.2832 

0.4 1.1241 1.1333 1.1642 1.2234 

0.5 .9899 1.0303 1.0624 1.1155 1.1962 

0.6 .9767 1.0077 1.0387 1.0960 1.1859 

0.7 .9602 .9746 1.0098 1.0820 1.1848 

0.8 .9393 .9466 .9953 1.0737 1.1885 

0.9 .9124 .9334 .9843 1.0699 1.1944 

1.0 .8773 .9131 .9749 1.0691 1.2009 

1.2 .8651 .8993 .9684 1.0721 1.2120 

1.5 .8300 .8829 .9655 1.0774 1.2198 

2.0 .8083 .8752 .9667 1.0799 

13 
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Figure 6.   Two keyway shaft, torque. 
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Table 6.    Two key way shaft,   volume factor   (V) 

B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .6187 .5226 .4195 

0.3 .6927 .6008 .4944 .3831 

0.4 .6853 .5848 .4688 .3517 

0.5 .7524 .6753 .5678 .4457 .3246 

0.6 .7511 .6698 .5562 .4277 .3014 

0.7 .7496 .6625 .5429 .4112 .2818 

0.8 .7477 .6558 .5319 .3962 .2655 

0.9 .7454 .6505 .5221 .3829 .2522 

1.0 .7426 .6433 .5117 .3713 ,2416 

1 .2 .7404 .6344 .4974 .3559 ,2276 

1 .5 .7346 .6215 .4813 .3416 .2197 

2.0 .7283 .6086 .4703 .3373 
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Figure 7.  Two keyway shaft, stress 
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Table 7.  Two keyway shaft, stress factor (f) 

B/R 
t\/ D 

0.1 0.2 0.3 0.4 0.5 

0.2 1.4936 1.6578 1.7501 

0.3 1.2487 1.3642 1.4929 1.6491 

0.4 1.1883 1.2739 1.4173 1.6313 

0.5 1.0074 1.0960 1.2092 1.3882 1.6555 

0.6 .9947 1.0756 1.1930 1.3902 1.7027 

0.7 .9787 1.0451 1.1722 1.3981 1.7623 

0.8 .9584 1.0195 1.1660 1.4127 1.8269 

0.9 .9323 1.0088 1.1629 1.4318 1.8910 

1.0 .8978 .9916 1.1625 1.4532 1.9502 

1.2 .8864 .9827 1.1703 1.4905 2.0422 

1.5 .8534 .9737 1.1855 1.5318 2.1024 

2.0 .8342 .9744 1.2008 1.5463 
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Table 8. Four keyway shaft, volume factor   (V) 

A/B B/R  

0.1 0.2 0.3 0.4      0.5 

0.2 .4806 .3361 .2114 

0.3 .6088 .4511 .2965    .1705 

0.4 .5952 .4253 .2624    .1384 

0.5        .7214 .5769 .3983 .2333    .1140 

0.6        .7190 .5672 .3805 .2119    .0962 

0.7        .7161 .5541 .3605 .1935    .0842 

0.8        .7124 .5422 .3444 .1783 

0.9        .7080 .5330 .3304 .1662 

1.0        .7024 .5203 .3160 .1572 

1.2        .6982 .5051 .2974 .1482 

1.5        .6870 .4832 .2787 

2.0        .6748 .4622 .2692 

19 
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Figure 9.  Four keyway shaft, stress 
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Table 9.  Four keyway shaft, stress factor (f) 

B/R 
rv/ u 

0.1 0.2 0.3 0.4 0.5 

0.2 1.7365 2.1206 2.4931 

0.3 1.3566 1.6214 2.0014 2.5784 

0.4 1.3011 1.5468 1.9971 2.8271 

0.5 1.0371 1.2130 1.5046 2.0591 3.1882 

0.6 1.0252 1.1979 1.5115 2.1568 3.6139 

0.7 1.0102 1.1737 1.5175 2.2660 4.0368 

0.8 .9910 1.1541 1.5382 2.3834 

0.9 .9661 1.1493 1.5609 2.4993 

1.0 .9331 1.1398 1.5899 2.6030 

1.2 .9232 1.1422 1.6424 2.7301 

1.5 .8940 1.1511 1.7092 

2.0 .8796 1.1717 1.7512 
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Figure 10.    Single square keyway with inner fillets. 
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Table 10.  Single square keyway with tight inner fillets 

Stress factor(f) 

B/R 
Volume 
factor(V) 

At keyway 
center(1) 

At inner 
fillet(2) 

0.1 .7703 .7804 

0.2 .7206 .9715 .9777 

0.3 .6504 .9941 1.0817 

0.4 .5690 1.0735 1.1641 

0.5 .4840 1.1977 1.2245 
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Figure 11.   Single spline shaft, torque. 
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A/B 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.2 

1.5 

2.0 

Table 11.     Single spline shaft,   volume factor   (V) 

B/R ,  

0.1 0.2 0.3 0.4 0.5 

.7853 .7865 .7878 

.7853 .7870 .7906 .7944 

.7864 .7903 .7968 .8048 

.7845 .7874 .7933 .8035 .8189 

.7852 .7899 .7993 .8143 .8362 

.7857 .7918 .8059 .8270 .8580 

.7862 .7950 .8113 .8390 .8832 

.7866 .7976 .8202 .8560 .9110 

.7869 .7996 .8253 .8712 .9433 

.7890 .8071 .8456 .9117 1.0158 

.7907 .8174 .8754 .9800 1.1561 

.7953 .8407 .9420 1.1404 
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Figure 12.   Single spline shaft,  stress, 
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Table 12.  Single spline shaft, stress factor (f) 

B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .6369 .6361 .6352 

0.3 .6369 .6358 .6335 .6309 

0.4 .6362 .6337 .6295 .6241 

0.5 .6374 .6356 .6317 .6251 .6152 

0.6 .6370 .6340 .6280 .6184 .6047 

0.7 .6366 .6328 .6239 .6107 .5920 

0.8 .6364 .6308 .6205 .6035 .5781 

0.9 .6361 .6291 .6152 .5939 .5638 

1.0 .6 359 .6279 .6120 .5854 .5483 

1.2 .6346 .6233 .6004 .5648 .5173 

1.5 .6335 .6172 .5842 .5340 .4704 

2.0 .6307 .6038 .5525 .4798 .4331 
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Figure 13.   Two spline shaft, torque. 
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Table 13.    Two spline shaft,   volume factor   (V) 

A/B B/R 

0.1 0.2 0.3 0.4 0.5 

0.2 .7865 .7889 .7914 

0.3 .7864 .7899 .7970 .8047 

0.4 .7886 .7965 .8095 .8255 

0.5 .7850 .7906 .8026 .8229 .8538 

0.6 .7863 .7958 .8145 .8446 .8886 

0.7 .7874 .7994 .8278 .8701 .9326 

0.8 .7883 .8059 .8386 .8945 .9837 

0.9 .7891 .8111 .8565 .9288 1.0400 

1.0 .7897 .8152 .8668 .9595 1.1058 

1.2 .7940 .8302 .9078 1.0418 1.2547 

1.5 .7973 .8509 .9682 1 .1818 1.5471 

2.0 .8066 .8980 1.1045 1.5172 
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Figure 14.   Two spline shaft,  stress. 
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Table 14.  Two spline shaft, stress factor (f) 

A/B 

0. 2 

0. 3 

0, 4 

0. ,5 

0. .6 

0. .7 

0, .8 

0, .9 

1 .0 

1 .2 

1 .5 

2 .0 

B/R 

3.1 0.2 0.3 0.4 0.5 

.6362 .6346 .6329 

.6362 .6340 .6294 .6243 

.6348 .6298 .6215 .6113 

.6371 .6336 .6259 .6131 .5946 

.6363 .6303 .6187 .6004 .5753 

.6357 .6281 .6108 .5862 .5532 

.6351 .6241 .6043 .5732 .5300 

.6346 .6209 .5944 .5564 .5071 

.6342 .6184 .5887 .5421 .4836 

.6315 .6097 .5678 .5088 .4398 

.6295 .5981 .5402 .4632 .3815 

.6240 .5740 .4903 .3937 
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Figure 15.    Four spline shaft,  torque. 
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Table 15.     Four  spline shaft,   volume factor   (V) 

A/B    B/R  

0.1 0.2 0.3 0.4 0.5 

0.2 .7888 .7937 .7989 

0.3 .7887 .7957 .8101 .8254 

0.4 .7932 .8090 .8352 .8674 

0.5 .7859 .7971 .8213 .8623 .9250 

0.6 .7885 .8076 .8452 .9063 .9962 

0.7 .7906 .8149 .8723 .9588 1.0877 

0.8 .7924 .8280 .8944 1.0090 1.1950 

0.9 .7940 .8386 .9310 1.0808 1 .3158 

1.0 .7954 .8467 .9519 1.1455 1.4601 

1.2 .8040 .8773 1.0378 1.3239 1.8021 

1.5 .8106 .9196 1.1663 1.6438 

2.0 .8292 1.0180 1.4739 
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A/B = 0.2 

J. X 
0.1 0.2 0.3 0.4 0.5 

B/R 

Figure 16.  Four spline shaft, stress 
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Table 16.  Four spline shaft, stress factor (f) 

B/R 
A/ a 

0.1 0.2 0.3 0.4 0.5 

0.2 .6356 .6332 .6305 

0.3 .6356 .6323 .6256 .6176 

0.4 .6336 .6263 .6142 .5986 

0.5 .6369 ,6318 .6206 .6019 .5756 

0.6 .6358 .6273 .6106 .5848 .5510 

0.7 .6349 .6240 .6001 .5670 .5257 

0.8 .6341 .6187 .5913 .5516 .5028 

0.9 .6334 .6144 .5794 .5344 .4842 

1.0 .6328 .6109 .5720 .5199 .4714 

1.2 .6293 .5998 .5508 .4989 

1.5 .6265 .5860 .5279 

2.0 .6192 .5630 
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Table 17.     Square key ways and external  splines,  volume factor   (V) 

B/R One keyway Two keyways Four keyways 

0.1 ,7633 .7426 .7024 

0.2 .7125 .6433 .5203 

0.3 .6424 .5117 .3160 

0.4 .5619 .3713 .1572 

0.5 .4783 .2416 

B/R One spline 

0.1 .7869 

0.2 .7996 

0.3 .8253 

0.4 .8712 

0.5 .9433 

T wo splines 

.7897 

.8152 

.8668 

.9595 

1 .1058 

Four splines 

,7954 

.8467 

.9519 

1 .1455 

1 .4601 
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Figure 18.    Square keyways and external splines,  stress. 
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Table 18. Square keyways & enternal splines, stress factor(f) 

B/R One keyway Two keyways Four keyways 

0.1 .8773 .8978 .9331 

0.2 .9131 .9916 1.1398 

0.3 .9749 1.1625 1.5899 

0.4 1.0691 1.4532 2.6030 

0.5 1.2009 1.9502 

B/R One spline Two splines Four splines 

0.1 .6359 .6342 .6328 

0.2 .6279 .6184 .6109 

0.3 .6120 .5887 .5720 

0.4 .5854 .5421 .5199 

0.5 .5483 .4836 .4714 
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Table 19.     Milled shaft,  volume factor   (V) 

H/R One flat Two flats Four flats 

0 .7813 .7811 .7811 

0.1 .7617 .7149 .6520 

.5998 .4501 
.2777 

.4667 

.3349 

.2168 

.1225 

.0559 

.0173 

1.0 .1460 

0.2 .7018 
0.29289 

0.3 .6291 

0.4 .5510 

0.5 .4717 

0.6 .3951 

0.7 .3228 

0.8 .2568 

0.9 .1980 
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Table 20.  Milled shaft, stress factor (f) 

H/R One flat 

0.1 .7749 

0.2 .8571 

0.29289 

0.3 .9485 

0.4 1.0593 

0.5 1.1977 

0.6 1.3725 

0.7 1.5987 

0.8 1.8975 

0.9 2.3049 

1.0 2.8935 

Two flats 

• 8199 

t ,9776 

1, .2045 

1, .5520 

2 .1237 

3 .1455 

5 .3129 

11 .5433 

Four flats 

.8743 

1.1848 

1.7004 
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0.6 0.7 
B/A 

Figure 21.    Rectangular shaft. 
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Table 21.  Rectangular shaft 

B/A 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

Volume 
factor(V) 

Stress 
factor(f) 

.05635 5.2697 

.1248 3.0928 

.2250 2.0587 

.3559 1.4805 

.5146 1.1230 

.6971 .8862 

.8991 .7212 

1.1167 .6015 
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.1 .2 

Figure 22.    Pinned shaft, torque. 
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Table 22.     Pinned shaft,  volume factor   (V) 

A/R One groove 

7700 

Two grooves Fou r grooves 

0.1 .7558 .7280 

0.2 .7316 .6803 .5855 

0.3 .6760 .5738 .4062 

0.4 .6087 .4521 .2374 

0.5 .5349 .3300 .1118 
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SHEAR   STRESS 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

MAXIMUM   AT   BOTTOM 
OF Cl 

0.1 0.2 0.3 

A/R 

0.4 0.5 

Figure 23.    Pinned shaft,  stress. 
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Table 23.  Pinned shaft, stress factor(f) 

A/R One groove Two grooves Four grooves 

0.1 1.1197 1.1374 1.1674 

0.2 1.1804 1.2520 1.3800 

0.3 1.2286  ^ 1.3939 1.7281 

0.4 1.2894 1.6015 2.3912 

0.5 1.3822 1.9211 3.8744 
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Table 24.    Cross shaft,  volume factor   (V) 

X/S Shape P Shape M 

0.1 .00741 .09907 

0.2 .05219                                         -2120 

0.3 .1642                                            .3767 

0.4 .3538                                             5714 

0.5 .5947                                            .7639 

0.6 .8302                                            -9247 

0.7 1.0058 1.0368 

0.8 1.0981 1.0981 
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Figure 25.  Cross shaft, stress 
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Table 25.  Cross shaft, stress factor(f) 

X/S 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

Shape P 
At a At b 

26.8826 8.7805 

7.2946 2.7669 

3.5252 1.4172 

2.1192 .9709 

.7849 

.6903 

.6366 

.6090 

Shape M 
At a At b 

4.0676 .7564 

2.3702 .9225 

1.5818 .8651 

1.1844 .7806 

.9210 .7109 

.7576 .6606 

.6059 .6275 

.4763 .6090 
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ACCURACY OF THE COMPUTERIZED SOLUTION 

To compare the SHAFT (computer) analysis of the torsion 
of a solid circular shaft with the exact, classical textbook 
solution, one quadrant of a unit-radius shaft was run with 
two finite-different grid spacings and the results of the 
equations were compared, as follows: 

Equation Comparison 

Torque 

SHAFT 

2Ge(V)R'* 
2(V)RU 

2(V)R^ 

2V 

- <^ 

Exact 

cej 
j 

U^R" 
U/2) 

Shear stress (max) G9(<^)R 
ds 

(d-i) 
ds 

GGR 

1. 

SHAFT Exact Deviation (%) 

Torque (h=0.125 
(h=0.0625) 

1.5546 
1.5669 

1.5708 
1.5708 

1.03 
0.25 

Shear stress (h=0.125) 
(h=0.0625) 

1.0000 
1.0000 

1.0 
1.0 

0. 
0. 

Area1 (h=0.125) 
(h=0.0625) 

3.13316 
3.13984 

3.14159 
3.14159 

0.268 
0.056 

*Used for internal program checking. 

The mathematical model used in the SHAFT computer program 
generation of this handbook is described in appendix A. 
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PARALLEL SHAFT CONCEPT 

The torsional   rigidity of a  uniform circular  shaft,   i.e.,   the torque 
required to produce unit   (one radian)   displacement,   is: 

C = T/G = GO 

In the terminology of the membrane analogy,   the torsional  rigidity 
of non-circular  shafts is defined as: 

c = T/e = 2-G-e(v)f(R)/e 

The overall  torsional  rigidity of a  system consisting of a  number 
of shafts in parallel   (fig.   26)   is simply the sum of the torsional 
rigidities of the individual  component shafts. 

N 
S 
1=1 
I     C. = Ci + C2 + Cj + ••• + c 

N 

N N 
s    T.e. = es    T = err, + T2 + T3 + •• + T ) 

1=1 1=1 

The torsional  rigidity of hollow shafts can  be determined  by re- 
garding the configuration as a parallel  shaft arrangement.    The over- 
all  torsional  rigidity can  be obtained  by subtracting the torsional 
rigidity of a  shaft having the dimensions of the bore   (or  inner contour) 
from that of a  shaft having the dimensions of the outer contour.    The 
advantages of being able to apply the principles of superposition 
(fig.   27-31)   to combinations of concentric   (inner and outer)   shaft con- 
tours are obvious.     If,   for example,   design charts have been  prepared 
for  20 different shaft shapes,  then 400 different solutions to all  possible 
combinations of inner and outer  shaft contours   (20 inner x  20 outer) 
are available. 
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ILLUSTRATIVE DESIGN APPLICATION 

Find the maximum torque that may be transmitted by the 

circular shaft with the interior splines (shown in Fig. 32) 

if the following design criteria are to be satisfied: 

1) Maximum twist 0 not to exceed 2 degrees over the full 
length of the shaft. 

2) Maximum Shear Stress Ss not to exceed 15,000 kPa (psi) 

Torque T = Z T = 5: 2G0 (V) R4 = 2G0 I   (V) R 

Z    (V)R4 = 0.7854-(0.1058-0.0491) 

= 0.7854(1" circle)-0.0567(8 tooth spline) 

» 0.7287 

Condition 1: 

0 = 2X(TT/180)X(1/18) - 0 . 001939 (rad/in) 

T = 2(12xl06) (0.001939) (0.7287) = 33,900(in-lb) 

Condition 2: 

(S /T = (d(t)/ds)/(2VR3) - 1.0/(2x0.7287x1 ) 

= 0.6862 

T = S 70.6862 = 15,000/0.6862 = 21,860(in-lb) 
s 

Use T of 21,860(in-lb) as maximum design Torque 
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0.5"r 

1.0'R 

V=(7r/4)R4 

= (7r/4) I4 =0.7854 

0.5"r 

(From Table 15) 

2V(R)4=2(0.8468){0.5)4 

=0.1058 

0.5"r 

V=(7r/4)R4 

=(7r/4){0.5)4 

=0.0491 

Figure 32.  Illustrative design application, 
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APPENDIX A 

MATHEMATICAL MODEL USED IN THE CLYDE COMPUTER PROGRAM 

As the term implies, boundary value problems are those for which 
conditions are known at the boundaries.   These conditions may be the 
value of the problem variable itself (temperature, for example), the 
normal gradient or variable slope, or higher derivatives of the problem 
variable.   For some problems, mixed boundary conditions may have to be 
specified:    different conditions at different parts of the boundary.   CLYDE 
solves those problems for which the problem variable itself is known at 
the boundary. 

Given sets of equally spaced arguments and corresponding tables 
of function values, the finite difference analyst can employ forward, 
central, and backward difference operators.   CLYDE is based upon central 
difference operators which approximate each differential operator in the 
equation. 

The problem domain is overlaid with an appropriately selected grid. 
There are many shapes (and sizes) of overlaying Cartesian and polar 
coordinate grids: 

rectangular 
square 
equilateral-triangular 
equilangular-hexagonal 
oblique 

Throughout the area of the problem, CLYDE uses a constant-size 
square grid for which the percentage errors are of the order of the grid 
size squared (h2) .   This grid (or net) consists of parallel vertical lines 
spaced h units apart, and parallel horizontal lines, also spaced h units 
apart, which blanket the problem area from left-to-right and bottom-to- 
top. 

The intersection of the grid lines with the boundaries of the domain 
are called boundary nodes.   The intersections of the grid lines with each 
other within the problem domain are called inner domain nodes.    It is at 
these inner domain nodes that the finite difference approximations are 
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applied.   The approximation of the partial differential equation with the 
proper finite difference operators replaces the PDE with a set of subsi- 
diary linear algebraic equations, one at each inner domain node.   In 
practical applications, the method must be capable of solving problems 
whose boundaries may be curved.   In such cases, boundary nodes are 
not all exactly h units away from an inner node, as is the case between 
adjacent inner nodes.   The finite difference approximation of the harmonic 
operator at each inner node involves not only the variable value at that 
node and at the four surrounding nodes (above, below,  left, and right), 
but also the distance between these four surrounding nodes and the inner 
node.   At the boundaries, these distances vary unpredictably.   Compensa- 
tion for the variation must be included in the finite difference solution. 
CLYDE represents the problem variable by a second-degree polynomial 
in two variables, and employs a generalized irregular "star" in all direc- 
tions for each inner node.   In practice, one should avoid a grid so coarse 
that more than two arms of the star are irregular (or less than h units in 
length) .   The generalized star permits, and automatically compensates for, 
a variation in length of any of the four arms radiating from a node.   For no 
variation in any arm, the algorithm reduces exactly to the standard har- 
monic "computation stencil." 

At each inner domain node, a finite difference approximation to the 
governing partial differential equation  (PDE)  is generated by CLYDE. 
The resulting set of linear algebraic equations is solved simultaneously 
by the program for the unknown problem variable (temperature, voltage, 
stress function, etc.) at each node in the overlaying finite difference 
grid.   A graphics version of the program also generates, and displays 
on the CRT screen,  iso-value contour maps for any desired values of the 
variable.   This way, a more meaningful picture of the solution in the 
form of temperature distributions, constant voltage lines, stress concen- 
tration graphs, or even contour lines of different values of deformation 
and bending moment in structural problems,  is made available to the 
engineer. 

The user may also specify a finer grid spacing to increase resolu- 
tion in critical regions of the problem, modify the scale of the display, 
change the boundary of the problem or redraw it completely, and change 
boundary conditions and coefficients—all at the face of the screen.   It is 
also possible to request CLYDE to pass a plane through the two dimen- 
sional picture displayed on the screen.   This plane is perpendicular to 
the screen and appears as a straight line.   CLYDE will generate a new 
display showing a cross section (or elevation) view from the edge or 
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overlaying finite 
difference GRID 

BOUNDARY NODES 
value of the variable ii 
known at the boundary) 

BOUNDARY or 
contour of the 
problem 

INNER DOMAIN NODES 
(value of the variable to be 
found by finite difference 
solution) 

Figure A-1 .    Finite difference grid, 
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side.   In this manner the variation or plot of the solved variable along 
that line is displayed on the screen.   If the problem geometry is symme- 
trical, the designer does not have to display and work with the entire 
picture of the problem, he need only work with the "repeating section." 
In essence, the graphics user may examine the problem solution at will 
and redesign the problem (contour, boundary conditions, equation co- 
efficients, etc.) at the screen resolving the "new design" problem. 

Consider the general expression: 

ar)2 9^       A  ok 

in the r\, I, X coordinate system, where A, B, C, D are arbitrary 
constants. 

When C = O, V 2f reduces to a two-coordinate system,  in X and Y, 
for example: 

V2f = A^ + B|^ = D Eq  (2) 
9x oy 

Using central differences, the finite difference approximations to 
the partial differential operators of function f at representative node O 
are: 

x y 

X 

dy2     hz 
y        y 

for a sauare arid, h   = h   = h and the harmonic operator Vaf becomes: 
-is x       y 

h2v 2U = [A (fi + fa) + B  (fj + f4) - (A+B) 2fo ] = h2D Eq  (4) 

see figure A-4. 
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Figure A-3.    Inner domain nodes. 
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Figure A-f.   Harmonic operator for square star in X-Y grid, 
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This finite difference equation at node zero involves the unknown 
variable at node zero (f0) plus the unknown value of the variable at the 
four surrounding nodes (f!, f2, f3, U) > plus the grid spacing (h) .   The 
five nodes involved form a four-arm star with node zero at the center. 
This algebraic (or difference) equation could be conveniently visualized 
as a four-arm computation stencil made up of five "balloons" connected in a 
four-arm star pattern and overlayed on the grid nodes.   The value within 
each balloon is the coefficient by which the variable (f) at that node is 
multiplied to make up the algebraic approximation equation. 

The numerical treatment of an irregular star (h^ hjii4 h3t h4) re- 
presents the function f near the representative node O by a second-degree 
polynomial in X and Y: 

f(X,Y) = f0 + a^ + a2Y + a3X2 + a4Y
2 + a5XY Eq (5) 

Evaluating this polynomial at the neighboring nodes (1, 2, 3, 4) 
produces the following set of equations: 

fl = f 0 +8! hj + a, h^ 

f 2 = fo + a2^2 + a4h22 

fa = f0 - axhj + ajh,2 

^4 = U -32*14 +a4h42 Eq (6) 

which are then solved for a, and 84 which are necessary to satisfy the 
harmonic operator v2f, since: 

— =a1 +2a3X + a5Y, g^l = Zaj 

|^ = a2 + 2a4Y + asX, 0 = 234 Eq (7) 

and 

V2f = A (2a,) +B (234) Eq (8) 
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Performing the necessary algebraic operations, substituting results, 

collecting terms, and using the following ratios: 

bj hi 
h b2 - h 

h, 
h 

hs u   _ h* 
Eq  (9) 

The harmonic operator becomes: 

h2 V2f0 = 
2A 

f,  +• 
2B 

0 =       bi (bi+bj)     1      b2{b2+b4) 
f,   + 

2A 
f, + 

2B 
+ b3(b1+b3)    3     b4(b2+b4)     4 f. + 

(J£.+   JB   , =   h2D 
b1b2        b2b4 

Eq  (10) 

See figure A-5. 

When C^O, V2f can be applied to an axisymmetric cylindrical co- 

ordinate system,  in Rand Z, for example: 

2r    A a2f    0 a2f    c af    n Eq  (11) 

For a regular star, the harmonic operator becomes (in a similar 

manner to equation 4): 

Ch 
h2V2f0=    A(f1 +f3) +B(f2 +f4) +—    (f2-f4) 

2Rr 

- (A + B)2 f0      = h'D Eq  (12) 

See figure A-6. 
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Figure A-5.    Harmonic operator for irregular star in X-Y grid. 
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Figure A-6.   Harmonic operator for square star for R-Z grid, 
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For an irregular star  (hj ^ h2 ^ hj ^ 114), the harmonic operator 

becomes (in a manner similar to equation 10): 

■.2     2.        i 2A f 2B h vfo ^MMbJ fl+b2(b2+b4)
f2 + 

2A f 2B f   + 
+ b3(b1+b3)     3     b4(b2+b4)     4 

1 
Ch ba f k 
Ro        b2(b2+b4)     2     b4(b2+b4) 

i    f Z2   f + 

r ]      1 
2A_    ^ ^B_ _  Ch    cb«-b4 j     f ! 

bjbj b2b4 Ro        b2b4 
^ 

= h2D Ec1  (13) 

See figure A-7. 

Equations 10 and 13 are employed in the programmed solutions for 
Cartesian and cylindrical coordinates, respectively. 
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Figure A-7.    Harmonic operator for irregular star in R-Z grid, 
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APPENDIX B 

EXTENSION OF MODEL TO HOLLOW SHAFTS 

This would appear to be a simple matter of solving the 
governing PDE over a multiply-connected boundary, were it 
not for the uncertainty concerning boundary conditions.  The 
actual value of the problem variable at the boundary was not 
important in the torsion application, only the difference 
in the problem variable at various points mattered.  The 
problem variable at the boundary could be assumed to have 
any value, as long as there was only one boundary.  With 
two or more boundaries the solution calls for a different 
approach. 

1 
The stress function is obtained as the superposition 

of two solutions, one of which is adjusted by a factor (k). 
This is the programmed solution to shafts with a hole. 
The hole may be of any shape, size, and location.  The two 
solutions, to be combined, are shown in figure B-l: equa- 
tions and boundary conditions.  Once the contour integrals 
are taken around the inner boundary of area A^, the only 
unknown, k, may be readily obtained.  The contour integral, 
which need not be evaluated around the actual boundary, 
may be taken around any contour that encloses that boundary, 
and includes none other (for example, see shaded area Ag) 
in figure B-l. 

LF.S. Shaw, The Torsion of Solid and Hollow Prisms in the 
Elastic and Plastic Range by Relaxation Methods, Austral- 
ian Council for Aeronautics, Report ACA-li, November 194 4, 
pp 8,11,23 
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Figure B-1 .   Mathematical approach to hollow shaft problem, 
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